5 research outputs found

    Fleets of robots for environmentally-safe pest control in agriculture

    Get PDF
    Feeding the growing global population requires an annual increase in food production. This requirement suggests an increase in the use of pesticides, which represents an unsustainable chemical load for the environment. To reduce pesticide input and preserve the environment while maintaining the necessary level of food production, the efficiency of relevant processes must be drastically improved. Within this context, this research strived to design, develop, test and assess a new generation of automatic and robotic systems for effective weed and pest control aimed at diminishing the use of agricultural chemical inputs, increasing crop quality and improving the health and safety of production operators. To achieve this overall objective, a fleet of heterogeneous ground and aerial robots was developed and equipped with innovative sensors, enhanced end-effectors and improved decision control algorithms to cover a large variety of agricultural situations. This article describes the scientific and technical objectives, challenges and outcomes achieved in three common crops

    Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia

    No full text
    In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide

    Dual-Layer Surface Coating of PLGA-Based Nanoparticles Provides Slow-Release Drug Delivery To Achieve Metronomic Therapy in a Paclitaxel-Resistant Murine Ovarian Cancer Model

    No full text
    Development of drug resistance is a central challenge to the treatment of ovarian cancer. Metronomic chemotherapy decreases the extent of drug-free periods, thereby hindering development of drug resistance. Intraperitoneal chemotherapy allows for treatment of tumors confined within the peritoneum, but achieving sustained tumor-localized chemotherapy remains difficult. We hypothesized that modulating the surface properties of poly­(lactic-<i>co</i>-glycolic acid) (PLGA)-based nanoparticles could enhance their drug retention ability and extend their release profile, thereby enabling metronomic, localized chemotherapy <i>in vivo</i>. Paclitaxel was encapsulated in particles coated with a layer of polydopamine and a subsequent layer of poly­(ethylene glycol) (PEG). These particles achieved a 3.8-fold higher loading content compared to that of nanoparticles formulated from linear PLGA–PEG copolymers. <i>In vitro</i> release kinetic studies and <i>in vivo</i> drug distribution profiles demonstrate sustained release of paclitaxel. Although free drug conferred no survival advantage, low-dose intraperitoneal administration of paclitaxel-laden surface-coated nanoparticles to drug-resistant ovarian tumor-bearing mice resulted in significant survival benefits in the absence of any apparent systemic toxicity

    Dual-Layer Surface Coating of PLGA-Based Nanoparticles Provides Slow-Release Drug Delivery To Achieve Metronomic Therapy in a Paclitaxel-Resistant Murine Ovarian Cancer Model

    No full text
    Development of drug resistance is a central challenge to the treatment of ovarian cancer. Metronomic chemotherapy decreases the extent of drug-free periods, thereby hindering development of drug resistance. Intraperitoneal chemotherapy allows for treatment of tumors confined within the peritoneum, but achieving sustained tumor-localized chemotherapy remains difficult. We hypothesized that modulating the surface properties of poly­(lactic-<i>co</i>-glycolic acid) (PLGA)-based nanoparticles could enhance their drug retention ability and extend their release profile, thereby enabling metronomic, localized chemotherapy <i>in vivo</i>. Paclitaxel was encapsulated in particles coated with a layer of polydopamine and a subsequent layer of poly­(ethylene glycol) (PEG). These particles achieved a 3.8-fold higher loading content compared to that of nanoparticles formulated from linear PLGA–PEG copolymers. <i>In vitro</i> release kinetic studies and <i>in vivo</i> drug distribution profiles demonstrate sustained release of paclitaxel. Although free drug conferred no survival advantage, low-dose intraperitoneal administration of paclitaxel-laden surface-coated nanoparticles to drug-resistant ovarian tumor-bearing mice resulted in significant survival benefits in the absence of any apparent systemic toxicity
    corecore